Market Design Concepts to Prepare

for Significant Renewable Generation

Flexible Ramping Product

Ethan D. Avallone SENIOR MARKET DESIGN SPECIALIST – ENERGY MARKET DESIGN

Market Issues Working Group

April 3, 2018, Rensselaer NY

DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED

NYS CLEAN ENERGY STANDARD GOALS

	Carbon Pricing in the Wholesale Markets	Market Design Concepts to Prepare for Significant Renewable Generation
Forum	Integrating Public Policy Task Force (IPPTF)	Market Issues Working Group (MIWG)
Led by	NYISO + NY DPS + NYSERDA	NYISO
Objective	To further explore options to incorporate the cost of carbon dioxide into wholesale energy markets with the goal of contributing to achieving New York State's public policies, while providing the greatest benefits at the least cost to consumers and appropriate price signals to incentivize investment and maintain grid reliability.	To propose, analyze and develop new energy and capacity market products and/or rule changes that would incent the participation of resources that can enhance the availability, flexibility, predictability, and dispatchability of the NY Power System.
2018 Deliverables	Draft proposal and supporting rationale for how carbon could be priced in NY's wholesale electricity markets.	 Market Design Concept Proposals for viable near-term products and rule enhancements. 3-5 year vision for market design.

MASTER PLAN - Q2 2018

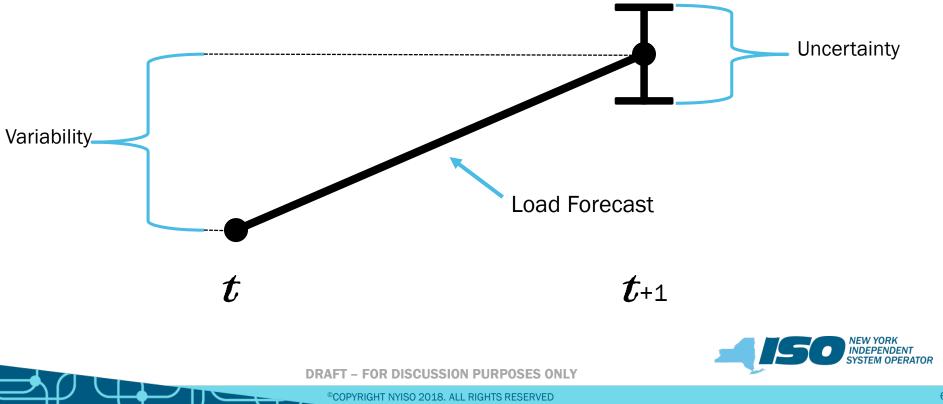
DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED

Agenda

- Background
- NYISO Look-Ahead
- NYISO Flexible Ramping Product: Initial MDCP
- Timeline
- Appendix I: CAISO and MISO Ramp Product Implementations
- Appendix II: Previous Presentations

Background


DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED.

Flexible Ramping Product to Address Forecast Uncertainty

- Volatility in load ramp net of renewable generation was observed in the Real-Time Market Study.
 - As output from intermittent generators changed, the power system had to respond quickly to un-forecasted swings in net load ramp.
- A ramping product would enable the NYISO to procure additional ramp-up and ramp-down capability by holding a portion of wholesale generating capability to a high or low level of output.
 - Could be procured similar to how the NYISO currently procures 10- and 30-minute Reserves.
 - Could be split into two distinct products: ramp-up and ramp-down.
- A ramp-down product could provide flexibility not incented by the procurement of operating reserves or regulation today.

Flexible Ramping Product to Address Forecast Uncertainty

NYISO Look-Ahead

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED.

NYISO Look-Ahead

- Multi-interval optimization resolves forecast variability by prepositioning resources to meet ramp-up and ramp-down needs between intervals
 - However, the success of this technique depends on a resource mix with adequate ramping capability

Example – Resource Assumptions

- The following simplified example shows the benefits of a multi-interval optimization, like that employed by the NYISO
 - The following assumptions will be used:*

	UOL	Incremental Cost	Ramp Rate
Resource	[MW]	[\$/MWh]	[MW/Min]
Generator 1	200	\$50	10
Generator 2	200	\$10	20
Shortage Price	9999	\$775	9999

Example – Single Interval Optimization

	UOL	Incremental Cost	Ramp Rate
Resource	[MW]	[\$/MWh]	[MW/Min]
Generator 1	200	\$50	10
Generator 2	200	\$10	20
Shortage Price	9999	\$775	9999

Interval	t	t+1
Load [MW]	150	275
Load Ramp [MW]	125	0
Generator 1 Energy Schedule [MW]	0	50
Generator 2 Energy Schedule [MW]	150	200
Energy Price [\$/MWh]	\$10	\$775
Generation/Load Balance [MW]	0	-25

Example – Multi-Interval Optimization

	UOL	Incremental Cost	Ramp Rate
Resource	[MW]	[\$/MWh]	[MW/Min]
Generator 1	200	\$50	10
Generator 2	200	\$10	20
Shortage Price	9999	\$775	9999

Interval	t	t+1
Load [MW]	150	275
Load Ramp [MW]	125	0
Generator 1 Energy Schedule MW [MW]	25	75
Generator 2 Energy Schedule MW [MW]	125	200
Generator 1 Ramp Schedule [MW]	50	-
Generator 2 Ramp Schedule [MW]	75	-
Energy Price [\$/MWh]	\$10	\$90
Generation/Load Balance [MW]	0	0

Flexible Ramping Product

	UOL	Incremental Cost	Ramp Rate
Resource	[MW]	[\$/MWh]	[MW/Min]
Generator 1	200	\$50	10
Generator 2	200	\$10	20
Shortage Price	9999	\$775	9999

- A flexible ramping product to address forecast uncertainty would procure additional ramp-up and/or ramp-down capability beyond that needed to meet the forecasted load.
 - This would provide flexibility in anticipation of an increase in renewable generation

Interval	t	t+1
Load [MW]	150	275
Load Ramp [MW]	125	0
Generator 1 Energy Schedule [MW]	25	75
Generator 2 Energy Schedule [MW]	125	200
Generator 1 Ramp Schedule [MW]	50	-
Generator 2 Ramp Schedule [MW]	75	-
Energy Price [\$/MWh]	\$10	\$90
Generation/Load Balance [MW]	0	0
DRAFT - FOR DIS		

NYISO Flexible Ramping Product: Initial Market Design Concept Proposal

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED.

Questions for the Next Market Design Phase

- The NYISO will collaborate with stakeholders to determine whether a ramp product would provide value in meeting reliability through the NYISO Energy markets during the next Market Design phase:
 - If a ramp product would provide value, then the NYISO should further determine:
 - Whether it is necessary to procure ramp-up, ramp-down, or both ramp-up and ramp-down
 - Which location(s) would benefit (e.g. zonal, regional, NYCA-wide)
 - The MW necessary to procure
 - The necessary time requirement for the ramp (e.g., 60 minute, 30 minute, etc.)
 - The time interval necessary for the ramp requirement (e.g., hourly)
 - Appropriate shortage pricing levels for the product
 - Whether offline units should be eligible to provide the product

NYISO Flexible Ramping Product

- The NYISO expects that a new ramping product would be procured in both the DA and RT markets.
 - NYISO could procure ramp on behalf of Load in the DA to prepare for RT uncertainty.
 - Would allow generation to reduce risk by selling at the DA price.
- The NYISO believes a ramp product could be cooptimized with energy and other applicable ancillary services products.
 - Would allow more efficient procurement of the ramp product.

NYISO Flexible Ramping Product

- The NYISO believes a flexible ramping MW requirement should be based on the response a resource can offer in a certain number of minutes (for example, 300 MW of 60-minute ramp down).
- The NYISO envisions that a ramp product MW requirement would be set at a time interval sufficient to provide the desired flexibility (for example, each hour).
- Expect that online units bidding self committed flex and ISO committed flex would be able to provide a ramp product

NYISO Flexible Ramping Product

- The NYISO expects that resources providing a ramp product would be compensated with a clearing price that includes lost opportunity cost.
- Consistent with the treatment of reserves today, the NYISO currently envisions that units would be allowed to bid a non-zero dollar value to provide the ramping product in DA if applicable.
 - Only bids of \$0 would be accepted in RT.
 - The NYISO does not believe that resources face a cost of providing ramp in RT aside from lost opportunity cost.
- The NYISO anticipates that the shortage pricing methodology applied to operating reserves and regulation service today would apply to a ramp product.

Timeline

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED.

Timeline

April 24, 2018

• Discuss draft outline of the Master Plan with stakeholders

May 23, 2018

- Continue stakeholder discussions regarding the flexible ramping product MDCP
- Continue discussions regarding the draft outline of the Master Plan with stakeholders

June 13, 2018

MDCP: Present Final Master Plan

Appendix I: CAISO and MISO Ramp Product Implementations

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED.

MISO – Ramp Capability Product

DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED

MISO Ramp Capability Product – Reasons for Implementation

- The RT optimization used by MISO for commitment and dispatch considers one 5minute interval at a time.
 - The ramp capability product helps the system position to meet ramping needs by setting aside ramp.
 - Avoids unnecessary shortage pricing events.

MISO Ramp Capability Product – Features

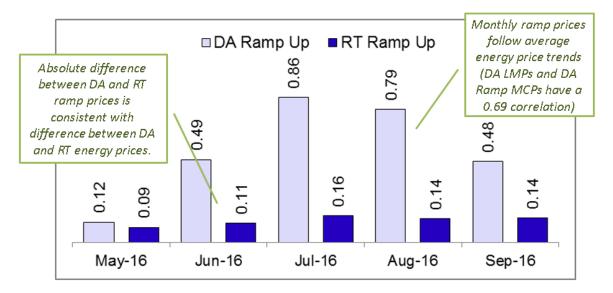
- Ramp Capability Product features:
 - Procured in DA and RT
 - The MW range output a resource can attain within 10 minutes beyond the next 10 minute target setpoint counts toward the ramp-up or ramp-down requirements
 - Cooptimized with energy and ancillary services
 - Requirement applies to the entire region (*i.e.*, not zonal)
 - Resources can provide only ramp-up, only ramp-down, or both
 - All online dispatchable resources are able to provide the product
 - Resources may opt out of providing the product, but most participate

MISO Ramp Capability Product - Requirements

- Ramp requirements determined by forecasted change in load for the region, wind generation, and interchange (*i.e.*, change in 'Net Demand'), plus
 - An additional amount of ramp up and ramp down are added to the requirement (*i.e.*, "Uncertainty," currently set to +/- 575 MW)
- DA hourly requirements are scaled to mimic the RT 10 minute Ramp up and Down Requirements
- Ramp Capability Up Requirement = max([Net Demand in future interval Net Demand in current interval]+Uncertainty,0)
- Ramp Capability Down Requirement = max([Net Demand in current interval Net Demand in future interval]+Uncertainty,0)

MISO Ramp Capability Product - Bidding

- Units do not provide bids for this product
 - The ramp capability clearing price is based on unit lost opportunity cost given the clearing price of other products
 - *E.g.*, if a unit bidding \$30/MWh for energy is dispatched down from producing energy priced at \$40/MWh by 1 MW in order to provide ramp up, then the clearing price of ramp will be \$10/MWh, all else equal


MISO Ramp Capability Product – Demand Curve

- Demand curve price currently set to \$5/MWh for ramp up and ramp down
 - Demand curve prices were determined by simulating with different demand curve price levels
 - Appropriate trade-offs with other products were considered
 - Cost of procuring the ramp requirement was considered

Monthly Average RCP Up Marginal Clearing Prices (MCPs)

🎇 MISO

Average DA MCP = \$.55/MWh, RT MCP = \$.13/MWh

NEW YORK INDEPENDENT SYSTEM OPERATOR

CAISO – Flexible Ramping Product

DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED

CAISO Flexible Ramping Product – Reason for Implementation

- CAISO advisory intervals were solving perfectly to the forecasted load that was input into the market software
 - Relatively small forecast errors would result in high prices
 - Power balance violations occurred more often in the model and the energy price cap would set the price.
 - CAISO does not go short of reserve requirements in the 5-minute dispatch
 - This issue was expected to become more prevalent with increased intermittent renewables

CAISO Flexible Ramping Product - Features

Flexible Ramp Product features:

- Only in Real-Time Unit Commitment (RTUC), RTD
 - Market software includes a look-ahead capability
- RTUC energy schedules binding at the Fifteen Minute Market (FMM) price from RTUC, re-optimized and settled in RTD
- The MW output a resource can attain within 5 minutes counts toward the flexible ramping product requirement
- Cooptimized with energy and ancillary services
- Requirement applies to the entire region (*i.e.*, not zonal)
- Resources can provide only ramp up, only ramp down, or both

CAISO Flexible Ramping Product - Requirements

- Hourly requirements calculated every day and posted the day prior
- RTD Net Load Forecast Error is the difference between the binding interval and the prior advisory for the same interval
 - 30-day histogram tracks the net forecast error for each hour of the day
 - Flex up uncertainty requirement is the 97.5 percentile
 - Flex down uncertainty requirement is the 2.5 percentile

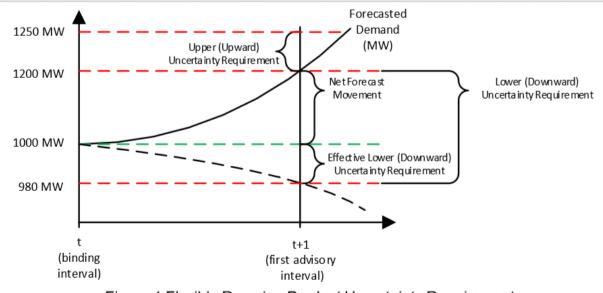
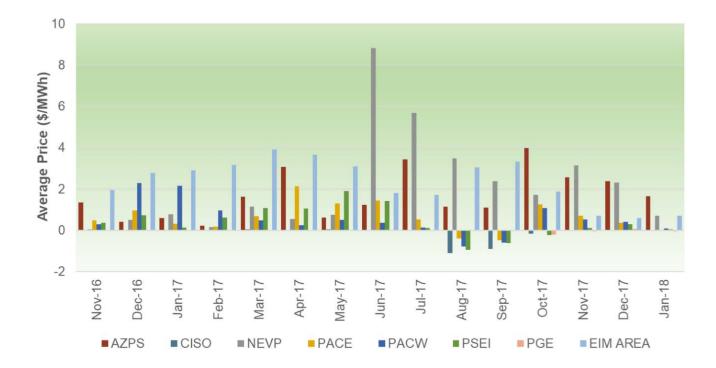


Figure 1 Flexible Ramping Product Uncertainty Requirements

Source: CAISO Business Practice Manual for Market Operations: https://bpmcm.caiso.com/Pages/BPMDetails.aspx?BPM=Market%200perations

DRAFT – FOR DISCUSSION PURPOSES ONLY

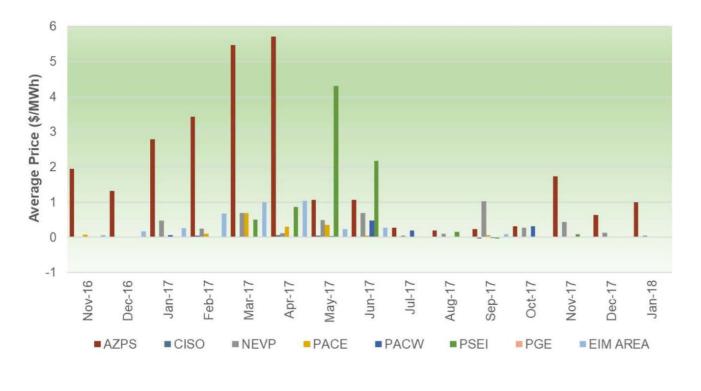
INDEPENDENT


CAISO Flexible Ramping Product – Demand Curve

- Units do not provide bids for this product
 - Clearing price is based on lost opportunity cost
- Ramp up demand curve price capped at \$247/MWh
 - This is a value slightly less than the contingency reserve relaxation parameter
 - Allows for appropriate trade-offs
 - The probability of a load balance constraint binding a certain level of procured flexible ramp is multiplied by \$247/MWh
 - Multiple levels of procured ramp are used in this calculation to form the ramp up demand curve
- Ramp down demand curve price is capped at \$152/MWh
 - This value is slightly more than the regulation down relaxation parameter
 - Allows for appropriate trade-offs
 - Ramp-down demand curve calculated using the same methodology as that used for the ramp up demand curve, but at a price of \$152/MWh

Average Flexible Ramp Up Price (\$/MWh)

 Iso PUBLIC
 Page 48


 Source: Market Performance and Planning Forum, February 20, 2018:
 http://www.caiso.com/Documents/AgendaandPresentation-MarketPerfomanceandPlanningForum-Feb202018.pdf

 DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED

Average Flexible Ramp Down Price (\$/MWh)

ISO PUBLIC

Page 49

Source: Market Performance and Planning Forum, February 20, 2018:

http://www.caiso.com/Documents/AgendaandPresentation-MarketPerfomanceandPlanningForum-Feb202018.pdf

DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED

Appendix II: Previous Presentations

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED.

Previous Presentations

Date	Working Group	Discussion points and links to materials
9-12-16	Budget & Priorities Working Group (BPWG)	Presentation of stakeholder feedback, proposed scope of the project
10-19-16	Market Issues Working Group (MIWG)	Presentation providing more detail on the scope and timeline of the project
11-22-16	Market Issues Working Group (MIWG)	Presentation updating project status
1-31-17	Market Issues Working Group (MIWG)	Integrating Public Policy Update (Phases 1 and 2)
2-16-17	Market Issues Working Group (MIWG)	Phase 2: Study Description and Assumptions Review
3-28-17	Market Issues Working Group (MIWG)	Phase 2: Study Description and Assumption Update
4-24-17	Market Issues Working Group (MIWG)	Phase 2: Preliminary DAM Results
6-21-17	Market Issues Working Group (MIWG)	Phase 2: Real-time Study Description and Assumptions
7-13-17	ICAP Working Group (ICAP WG)	The ICAP Market - Preliminary Findings (Phase 2)
8-22-17	ICAP Working Group (ICAP WG)	IPP Phase 2 Capacity Market Results and background information
8-25-17	Market Issues Working Group (MIWG)	IPP Phase 2: Simulation Progress
9-25-17	Market Issues Working Group (MIWG)	IPP Phase 2: RT Energy Market Simulation Results
10-3-17	Market Issues Working Group (MIWG)	Presentation discussing market assessment paper
10-16-17	Market Issues Working Group (MIWG)	IPP Phase 3: Initial Concepts under Consideration
11-02-17	Market Issues Working Group (MIWG)	IPP Phase 3: Stakeholder Feedback Posted
12-5-17	Market Issues Working Group (MIWG)	IPP Phase 3: Review of Potential Market Product and/or Structure Enhancements
12-20-17	Market Issues Working Group (MIWG)	Market Assessment for Accommodating Public Policy
1-10-18	Market Issues Working Group (MIWG)	Market Assessment for Accommodating Public Policy: Stakeholder Feedback
1-25-18	Market Issues Working Group (MIWG)	Accommodating Public Policy: Initial Prioritization

 \rightarrow

DRAFT – FOR DISCUSSION PURPOSES ONLY

SYSTEM OPERATOR

The Mission of the New York Independent System Operator, in collaboration with its stakeholders, is to serve the public interest and provide benefits to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policy makers, stakeholders and investors in the power system

www.nyiso.com

